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Brownian dynamics in a thin sheet with momentum decay
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The velocity autocorrelation function (VACF) of a disk moving in a two-dimensional viscous fluid is
calculated under the condition that the momentum leaks out of the fluid with a relaxation time 7. In the
absence of any memory effects, VACF decays exponentially. Even in the presence of memory effects,
VACEF essentially decays exponentially being accompanied by the correction of algebraic decay. This

correction depends on the coupling strength between the sheet and the outer fluid, i.e., ~e
~e~"/7t~! for strong- and weak-coupling limits, respectively. The correction of ¢~

dimensional character of the fluid sheet.
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! reflects the two-

PACS number(s): 68.10.—m, 05.40.+j, 47.15.Gf, 87.10.+¢

I. INTRODUCTION

The hydrodynamical problem of a diffusing particle in
a thin plane sheet of viscous fluid embedded in another
viscous fluid has received great attention in connection
with biophysics, for example, diffusion properties of pro-
teins or lipid molecules within biological membranes.
From the theoretical point of view [1-7], this problem
has been treated under the assumption that the velocity
field is constant over any cross section of the fluid sheet.
It then turns out that the anisotropic nature (or two
dimensionality) of the fluid sheet plays an essential role in
such a system. The diffusing particle lying in the sheet
has been represented by a cylindrical disk whose axis is
perpendicular to the plane of the sheet.

In a two-dimensional hydrodynamic model, however,
the Stokes approximation (inertialess limit) cannot pro-
vide any solution of the velocity field such that the
boundary conditions are satisfied at the surface of the
cylinder and simultaneously vanish at infinity. In other
words, a steady force per unit length applied to the
cylinder induces an infinite velocity causing infinite mo-
bility [8]. This contradiction is called the “Stokes para-
dox.” One way to recover a finite mobility is to partially
take into account the inertial term, for instance, by the
Oseen approximation. Unfortunately, even this approxi-
mation is not sufficient to provide the diffusion coefficient
in the sense that the mobility does not take a constant
value. In fact, it depends on the velocity of the disk since
there is no linear relation between the velocity and the
drag it experiences. Hence the argument used in deriving
the Einstein relation fails.

These difficulties are intrinsic to a two-dimensional hy-
drodynamical model with momentum conservation. In
the biomembrane problem, however, the fluid membrane
is not an isolated system. Typical biomembranes which
consist of freely moving lipid molecules exhibit certain
fluidity and are sandwiched by the surrounding water.
The momentum contained in the fluid sheet can be
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transferred to the adjacent bulk (three-dimensional) fluid
due to the coupling between the water molecules and the
polar heads of the lipid molecules. When the momentum
leaks into the surrounding outer fluid, the Stokes paradox
can be eliminated, and one can obtain a finite, constant
mobility of the disk.

Saffman and Delbriick were the first to come to this
point [1,2]. In their theory, Brownian motion of a
cylinder was investigated by a purely hydrodynamical
model in which both the thickness of the fluid sheet and
the viscosity of the outer fluid were taken into account.
The transfer of momentum to the adjacent fluid was in-
corporated through boundary conditions at the mem-
brane surfaces. The resulting translational diffusion
coefficient exhibits only a weak (logarithmic) dependence
on the particle size. Despite this success, it was still not
easy to obtain the general solution which satisfies the
dual boundary conditions. Their calculation was limited
to the case where the viscosity of the membrane is
sufficiently large compared to the viscosity of the adja-
cent fluid.

In order to grasp a more intuitive understanding of the
problem, several authors have proposed two-dimensional
hydrodynamic equations in which the total momentum is
nonconserved [4-7]. Particularly, Izuyama introduced
the idea of a phenomenological decay time characterizing
the leak process of the total momentum in the fluid sheet
[5]. This decay time is inversely proportional to the cou-
pling strength between the fluid sheet and the outer fluid.
Corresponding to the result by Saffman and Delbriick,
the diffusion coefficient shows logarithmic size depen-
dence in the weak-coupling limit (slow momentum-
relaxation limit) [6,7] (see also Sec. VI). The same hydro-
dynamical model as that appearing in Ref. [7] was in-
dependently proposed by Evans and Sackmann in a some-
what different context where they considered a fluid
membrane associated with a rigid substrate such as the
Langmuir-Blodgett film [4]. The consequences of this
model are briefly summarized in Sec. III.
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The main purpose of this paper is to investigate the ve-
locity autocorrelation function (VACF) of the Brownian
disk moving in a two-dimensional fluid with momentum
decay. In order to describe the motion of the diffusing
particle, we used the generalized Langevin equation
which takes memory effects into account. From the
point of view of statistical mechanics, one of the advanta-
geous outcomes of the present hydrodynamical model
with momentum decay is that one can rely on the
fluctuation-dissipation theorem (FDT) as our basis. As
described above, the mobility becomes infinite when the
momentum should be conserved, which in turn causes the
breakdown of FDT in the long-time limit. In fact,
Saffman was obliged to rely on more a obscure argument
when he calculated the mean-square displacement of the
disk diffusing in the isolated two-dimensional fluid [2].

Meanwhile our interests in the dynamical properties of
a Brownian particle naturally originate from the predict-
ed hydrodynamic long-time tails over twenty years. The
pioneering molecular-dynamics simulation by Alder and
Wainwright suggested that the VACF of a tagged parti-
cle decays algebraically rather than exponentially at long
times [9,10]. In a d-dimensional system, the simulation
data were consistent with an asymptotic decay as
~t~9/2, The appearance of the long-time tails was attri-
buted to the coupling between particle diffusion and
shear modes in the fluid. Several authors have theoreti-
cally rederived this behavior by using, for instance, the
lowest-order mode-coupling theory [11] or kinetic theory
[12].

Nevertheless, the above explanations for long-time tails
give rise to a serious breakdown of two-dimensional hy-
drodynamics. According to the Green-Kubo relation
[see (4.15) later], the diffusion coefficient diverges as ~Int
when the VACF simply decays as ~¢~!. In order to
overcome this difficulty, several theoretical arguments
have been proposed insisting on a faster-than-z ! decay,
such as (#VInz )~! [13,14]. Since this time, many at-
tempts have been made to compare these predictions
directly with computer simulations. However, the ex-
pected correction to the ¢t ! decay was too small to be
observed, and most of the simulations could confirm only
the existence of the ¢! tails, contrary to their aims
[13,15,16]. Quite recently, possible evidence of faster-
than-t 7! decay has been reported [17,18] by using a
lattice-gas cellular automaton [19]. What has been ob-
served in these studies is, however, only the onset of the
crossover to the (¢V'Int ) ! behavior.

We will show that within the present two-dimensional
fluid model with momentum decay, the VACF essentially
decays exponentially even in the presence of memory
effects. Moreover, we find algebraically decaying correc-
tions to the exponential decay depending on the coupling
strength between the adjacent fluid.

The outline of this article is as follows. In the next sec-
tion, the hydrodynamical model with momentum decay is
explained in detail. Following the calculation by Evans
and Sackmann [4], the drag on the disk is obtained both
for stationary and time-dependent cases in Sec. III. In
Sec. IV, a generalized Langevin equation is introduced to
describe the particle motion on the basis of FDT. Our
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main results concerning the VACEF are given in Sec. V for
both the cases without and with memory effects.

II. HYDRODYNAMICAL MODEL
WITH MOMENTUM DECAY

In order to provide a two-dimensional Newtonian fluid
theory appropriate for the diffusion process of a Browni-
an particle within the fluid sheet, a simple phenomeno-
logical hydrodynamical model was independently pro-
posed by two different groups though in the fairly
different contexts [4~7]. In this section, we explain the
basic idea of this model in detail following Ref. [6], but
with some new aspects added. We consider an infinite
plane sheet of viscous fluid with a dynamic viscosity 7.
This fluid sheet is assumed to be incompressible, being
characterized by a constant density p.

Let us consider a disk with radius a representing a
diffusing particle. When the disk moves with velocity
—U(t), a velocity field u is induced around the disk. This
velocity field should vanish at infinity. In ordinary hy-
drodynamics, the equation of motion of the fluid is writ-
ten using a tensor notation as [20]

%(pu[)z_ :ZZ‘ , | 2.1)
where 7, is the momentum-flux-density tensor
Ty = — 0y T puuy , (2.2)
and o is the stress tensor
ou;  Jduy
O =P8y tm ax, | ax, (2.3)

In (2.3), p is the pressure, and the incompressible condi-
tion has been imposed. Since the velocity u vanishes at
infinity, (2.2) is consistent with the conservation rule of
the total momentum of the fluid I1, i.e.,

oll;

ot
where the integration is extended to the whole area of the
fluid.

In the present problem, the fluid sheet is not an isolat-
ed system but coupled to the adjacent fluid. The momen-
tum within the fluid sheet thereby may leak to the outer
fluid. Consistent with such considerations, Suzuki and
Izuyama have proposed a hydrodynamic equation that
does not conserve the total momentum [5-7]. They in-
troduced a phenomenological momentum relaxation time
7 which should be inversely proportional to the coupling
strength between the sheet and the outer fluid. The dissi-
pation of the momentum should be given by

oll; 1

at P

A hydrodynamic equation which is consistent with this
total-momentum decay is expressed as
Ju

E—i—(u-grad)u: »%gradp +vV2u—%u ,

: -
=3 fdr(pu,-) 0, (2.4)

(2.5)

(2.6)
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where v=m/p is a kinematic viscosity. Here both grad
and V? represent two-dimensional operators. The last
term on the right-hand side indicates the transfer of
momentum due to the interaction at the interface.

It is worthwhile to point out that the momentum-decay
mechanism should, in principle, operate on the difference
between the velocity at a given point and that at infinity.
So far we have used a coordinate system such that the
two-dimensional fluid is at rest at infinity. Hence the
momentum-relaxation effect is incorporated through the
expression —u /7 in (2.6).

As a linearization of (2.6), we adopt the Stokes approx-
imation, neglecting the convective acceleration term
(u-grad)u. Consequently, our model is reduced to

du

Y = -—%gradp +VV2u——11ju N 2.7)
together with the incompressible condition
divu=0. (2.8)

Notice that (2.7) and (2.8) are equivalent to equations
proposed by Evans and Sackmann who considered a fluid
membrane associated with a rigid substrate such as the
Langmuir-Blodgett film [4].

It is important to notice that the present two-
dimensional fluid is only a “fluid” on time scales short
compared to the momentum decay time 7. Therefore the
analysis given in this paper concerns the decay in two-
dimensional hydrodynamics on some intermediate-time
scale, but does not capture true asymptotics. The expect-
ed behavior of the two-dimensional fluid in the
superlong-time regime (¢ >>7) will be separately dis-
cussed in Sec. VI.

III. DRAG ON THE DISK
MOVING IN THE FLUID SHEET

Several people have recently calculated the translation-
al drag which is felt by the disk moving with a time-
independent constant velocity — U along the x axis [4-7].
For the purpose of extending the model to the nonsta-
tionary case, the outline of previous arguments is briefly
summarized here.

Starting from the linearized steady-flow equation

*%gradp +vV2u—%u=0, divu=0 (3.1)
and the nonslip boundary condition at the surface of the
disk
)=(—U,0) (3.2)

(uy,u at r =a ,

y

we obtain the following drag force exerted by the sur-
rounding fluid along the x axis [4]:

(ka)K (ka)

Ko(ka) 3.3

F= |my(ka)*+4my

In the above, k is the important parameter defined by
[5-7]
k=1
vT

(3.4)
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and K, and K, are modified Bessel functions of the
second kind, order zero and one, respectively. The linear
dependence of F on U provides the well-defined drag
coefficient A such that

(ka)K (ka)

A=mn(ka)*+4my X (3.5)
0

(ka)

The diffusion coefficient is simply related to the mobility
b (defined as the inverse of the drag coefficient) by the
Einstein relation

kyT
A

D=kyTh= (3.6)

The time-dependent drag coefficient A(z) exerted by
the surrounding fluid on the disk, moving now with the
time-dependent velocity — U (¢) along the x axis, can be
easily obtained by extending the previous results. Let us
introduce the Fourier-Laplace (or one-sided Fourier)
transform defined for a function f (¢) by

f[w]=f0°°dt e iU (e) .

By taking the Fourier-Laplace transform of (3.1), we ob-
tain

(3.7)

—lgradp[w]+vV2u[w]—i,u[w]=O , (3.8)
p T
where
L1, (3.9)
T T

In (3.8), we have used the fact that the surrounding fluid
is at rest at £ =0. We require that the nonslip boundary
condition (3.2) holds at any time:

(uy(6),u,(1))=(—U(2),0) atr=a, (3.10)

or, equivalently, in w space

(uylolu,[w])=(-Ulw],0) atr=a . (3.11)
In view of (3.8) and (3.11), a frequency-dependent drag
coefficient can be simply deduced by replacing the con-
stant decay time 7 in the stationary case with the
frequency-dependent decay time 7' defined as in (3.9). By
using the new abbreviation

2 1

(k'a)

K=, (3.12)
vT
the drag coefficient is then given by
Alo]=mn(k'a)*+4 (wa)K,('a)
[w]=mn(xa R Ky(k'a)
5 ) (k'a)K (k'a)
=mpa‘io+mn(ka) +47Tn—~—15—~— (3.13)
0

Note that in the w—0 limit, this expression reduces to
(3.5). In the next section, we use (3.13) in order to con-
struct the generalized Langevin equation that describes
the Brownian motion of the disk.
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IV. GENERALIZED LANGEVIN EQUATION

For the description of the Brownian motion of the par-
ticle, we employ the Langevin equation of the disk mov-
ing with the time-dependent velocity U(?) (it is sufficient
to study only one-dimensional motion, say, along the x
axis). We also consider the case where the drag force can
be retarded. Then the Langevin equation should be gen-
eralized to

d
mdtU(t)

In the present problem, m is the mass of the disk, A(?) is
the inverse Fourier-Laplace transform of A{w] in (3.13),
and R (1) is a random force. Since the first term on the
right-hand side of (3.13) is proportional to i, one can
consider a renormalized mass m* which takes into ac-
count the additional inertia due to the dragging motion
of the fluid, i.e.,

=—[' drAC -t U@)+R() . @D

m*=m +mpa’ 4.2)

Consequently, we are led to an effective generalized
Langevin equation instead of (4.1) given by
d

m*—-U(1) =— [ drMi =) UH+R(@), 43)
with

_ 44 (k'a)K | (k'a)
Mol= ﬂ'n(K(l) ] Ko('a)

The random force R (t) in (4.3) is assumed to vanish
when averaged over the ensemble of molecular motions,
i.e.,

(R(t))=0.

(4.4)

4.5)

In addition, the random force should have properties
consistent with the equipartition of energy. This condi-
tion is given through the correlation function of R (t),
such as by [21]

(R(tp)R (ty+1))=kzTA(t) . (4.6)
As will be described below, (4.6) is equivalent to the
knowledge of the power spectrum of the random force.
The power spectrum of a real random variable f () is
generally defined as

At

hm (U f(@)]?) Py

4.7)
where At is the time interval of the observation, and f ()
is the Fourier transform of f(¢)
_ 1 * —iwt

floy=5—[" die™"f() 4.8)
[Here we have distinguished between the Fourier com-
ponents and the previous Fourier-Laplace components
according to the shape of the bracketing; see (3.7).] By
using these notations, (4.6) can be rewritten as

m*kpgT -

Ip(w)= Re{A[w]} , 4.9)
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with

(4.10)

This is what is called the fluctuation-dissipation theorem.
After taking the Fourier transform of (4.3), one finds

that the power spectrum of U(¢) and R (¢) are combined

by

1 IR ( )

m*? lio+A[w]]*

Since I () is given by (4.9), (4.11) yields I (), which in

turn gives the velocity autocorrelation function

(U(ty)U(ty+1)) according to the Wiener-Khintchine

theorem;

d()=(U(tx)U(ty+1))
wa doe I (o)

Iy(w)= 4.11)

koT iot
S L P P S— (4.12)
m* 27 Y¢c  ip+Xo)]
In deriving (4.12), we have used the fact that A[w] is ana-

lytic in the lower half-region of the complex w plane and
the integration path C is that depicted in Fig. 1. In the
limit of t —0+, the sum of the residues of (io+A[w]) ™!
is equal to the residue around the infinity, i.e., o=o0. If
Alw] remains finite in this limit, the residue is simply
equal to unity. Therefore (4.9) [or (4.6)] ensures the
equipartition law

kgT
lim ¢(1)=(U?)= 2

m - (4.13)
t— m

The mean-square average displacement of the disk
within the time interval [0,¢] is given by
2 — Lo L ' "
= t t U"U(t
(x20)= [ dr’ [ di" (U U )
t
=2 | dt'"(t —t")(t') . 4.14
J vt =) (4.14)

Equation (4.14) can be transformed into an expression for
the diffusion coefficient called the Green-Kubo relation

(x(z f gt

When the last integral converges, we obtain a finite
diffusion coefficient.

D = lim

t— o0

(4.15)

FIG. 1. Integration path C in the complex » plane. @’ and
" represent the real and imaginary parts of o, respectively.
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V. VELOCITY AUTOCORRELATION FUNCTION

In this section, we calculate the velocity autocorrela-
tion function of the disk for the cases without and with
memory effects in accordance with the Wierner-
Khintchine theorem [see (4.12)].

As discussed in Sec. III, when we consider the long-
time limit, i.e., o—0, the drag coefficient (4.4) reduces to
a finite constant value which no longer depends on the
frequency, f

(ka)K (ka)

Ko(ka) G-

an(ka)*+ 4y

1
m *
In such a case, Brownian motion simply turns out to ex-
hibit the Markovian nature in which the retardation
effects disappear. Substituting (5.1) into (4.12) and per-

forming the contour integral along the path C, we obtain
the expected exponentially decaying VACF as

(ka)K | (ka)
L €Xp —_—

m(ka)*+4my X

P(1)=

m olka)

(5.2)

We find that this fast decay of ¢(¢) is consistent with the
finite diffusion coefficient even, in the two-dimensional
fluid.

In the problem of a hard sphere moving in a three-
dimensional fluid, Landau and Lifshitz calculated the
frequency-dependent correction to the Stokes formula
F =6mnaU, where a is now the radius of the sphere [20].
The physics behind the correction term is the coupling to
the shear modes governed by the diffusion equation.
Zwanzig and Bixon calculated the frictional force on a
moving sphere for arbitrary frequency, compressibility,
and viscoelasticity, with arbitrary slip of the fluid on the
surface of the sphere [22]. By using the frequency-
dependent drag force, we can take the memory effects
into account. The observed hydrodynamical long-time
tail ¢(¢)~¢ 3/? in a three-dimensional fluid can be essen-
tially explained by this correction according to the hy-
drodynamical description [22]. Here we follow the same
arguments as that used in the case of the two-dimensional
fluid model with momentum decay. Since it is impossible
to handle (4.4) in general, we consider here two limiting
cases, namely, the strong- and weak-coupling limits. The
relevant asymptotic forms of the modified Bessel func-
tions are provided in the Appendix.

In the strong-coupling limit («'a >>1), we use (Al) to
obtain the asymptotic drag coefficient as

AMol= ;1*—[77-170«1 P+4mni’a ]

1* [my(ka)®+4mrnraV1+ioT] ,
m

(5.3)

which is then substituted into (4.12). Changing the vari-
able to s =iw+(1/7), we can express the VACF as

kBT 1 e—t/rf s eSt_
m* 2mi ¢ s+aVs+p’

o(1)= (5.4)

T s

FIG. 2. Integration path C’ in the complex s plane. s’ and s”
represent the real and imaginary parts of s, respectively.

where
a::—l* 4mnkaV'r | (5.5)
m
1 2 1 m
_ = . (5.6)
B m* m(ka) T m*

The integration path C’ is a straight line parallel to the
imaginary axis of the complex s plane (see Fig. 2). Since
singular points lie only on the negative real axis, the path
C’ can be deformed to the real negative axis, as shown by
path T in Fig. 3 [21]. Hence the VACF can be further
calculated as

:kBT 1 e /T fo ds—g.SiT
m* 2w —»  s+B—aV]s|i
w et
+ ds————————
fo Ss+[j’+a\/|s|i
:_k<B_T _q_e*t/‘rfwds ‘/§67S[
* A\ 2
m* 0 (s —pB)y+as
— kBTEe—t/Tt*3/2fwd§ ‘/Z‘e‘g .
m* T 0 (B—E&/t)+a%C/t
(5.7)
For large ¢, we have
s
T
— o s’

FIG. 3. Integration path T in the complex s plane. s’ and s”
represent the real and imaginary parts of s, respectively.
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ksT o _1pe 3=, Ve ¢
pm e T [ T
- kgT a

- a /=32
2m* VB

e (5.8)

Since 1/7 is large in this limit, the VACF essentially de-
cays exponentially. It is interesting to note that the ex-
ponential decay is corrected by the algebraically decaying
term t 372

J
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Finally, we consider the weak-coupling limit («'a << 1).
Upon using (A2) and (A3), the drag coefficient takes the
following asymptotic form:

47

AMol=
m*[In(2/k'a)—7v]

=T [ in(ikaVTFiwr) —y] "} . (5.9)
m

We substitute (5.9) into (4.12) and change the variable to
s =iw+(1/7), as above. It then follows that

(5.10)

kBT 1 —t/7 e’
P(t)=—1——e ds AL -1
m* 2wi ¢ s+4my/m*)—InVa’s/Av—y] ' —1/7
_ kBTe—z/r_l_ . [—InVa’s /4av—y]e"
m* 2mi V¢ (Amp/m*)+[s —(1/7)][—InVa%s /av—y]

Since our concern is the large ¢ behavior of ¢(t), we take
the limit of ¥—0, i.e., s —(1/7)—0. By performing the
inverse Laplace transform of the remaining function, the
asymptotic form of VACEF turns out to be

kgT 1 m* ~——
)~ —t/7 d —1 ‘/ 2 4y — st
) m*e - c’s47'r77[ nVa‘s/4v—yle
kT
=2 -t/m-1 (5.11)
8mn

The algebraic correction to the exponential decay is now
t !, reflecting the two-dimensional character of the fluid
sheet.

When 1/7=0, our model reduces to the usual two-
dimensional fluid in which the total momentum is con-
served. In this case, one can easily find from (5.11) that
the VACEF decays only algebraically,

kT
O~

t !, (5.12)

corresponding to the observed long-time tails in two-
dimensional fluids. [Notice that we cannot put 1/7=0 in
(5.8) for the strong-coupling limit.] The retardation effect
shows up as a very slow decay of the VACF. According
to the Green-Kubo relation, (4.15), the diffusion
coefficient diverges as ~Int, exhibiting the annoying
Stokes paradox. Equation (5.11) implies that the pres-
ence of a nonzero 1/7 ensures the exponential decay of
the VACF, which then eliminates the Stokes paradox.
This is the essential reason why we could obtain the finite
diffusion coefficient as in (3.6).

VI. SUMMARY AND DISCUSSIONS

We have calculated the velocity autocorrelation func-
tion of a disk moving in a two-dimensional viscous fluid
under the condition that the momentum leaks out of the
fluid sheet with a characteristic relaxation time 7. In the
long-time limit, the VACF decays exponentially, support-
ing the fact that the memory effects disappear. The ob-
tained results are consistent with the previous calcula-

I
tions of diffusion coefficients for stationary flow [4].

The introduction of the momentum decay mechanism
leads to the recovery of the fluctuation-dissipation
theorem with which we can calculate the VACF under
the influence of retardation effects. It has been shown
that the VACF essentially decays exponentially even in
the presence of memory effects. This exponential decay
eliminates the Stokes paradox and ensures the finite mo-
bility of the disk. We have also obtained algebraically de-
caying correction in the VACF depending on the cou-
pling strength between the fluid sheet and the outer fluid.
The results are

d(t)~e 1/t 73/2 (6.1)

and

d(t)~e P71 (6.2)

in the strong- (k’a >>1) and the weak- (k’a << 1) coupling
limits, respectively. The correction in the weak-coupling
limit ¢! reflects the two-dimensional character of the
fluid sheet.

It is instructive to argue here the physical interpreta-
tion of the phenomenological relaxation time 7. Accord-
ing to (3.5) and (3.6), the translational diffusion coefficient
in the weak-coupling limit (ka << 1) is given by [7]

N 411

2
In-—=——y
Ka

. (6.3)

This logarithmically weak size dependence corresponds
to the result by Saffman and Delbriick [1,2]. They con-
sidered a system such that a membrane of dynamic
viscosity 7 and thickness 4 is surrounded by a three-
dimensional fluid which has smaller dynamic viscosity 1’
satisfying ' <<7. It can be shown that (6.3) coincides
with the result of Saffman-Delbriick theory

kpT hn
— I — 6.4
D 4mnh n an' v 64
by putting
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2

LU 6.5)

27’

_ 1
==
v

except for the presence of /4 in the denominator of (6.4).
This difference simply comes from the definition of the
diffusion coefficient; we considered the force per unit
thickness, while they treated the force itself.

As mentioned in Sec. II, the two-dimensional fluid
model discussed so far is only a fluid on time scales short-
er than 7. In the superlong-time regime (¢ >>7), the flow
velocity is no longer a slow mode, and the system has
only two slow (diffusive) scalar modes, collective
diffusion, and heat diffusion. According to the mode-
coupling theory, the long-time tail is given by ~¢ 2, as in
Lorentz gases. This argument has been supported by the
recent quantitative analysis and corresponding simulation
of the VACEF for a two-dimensional lattice gas model of
interacting particles [23,24].

It is worth pointing out that in the calculation of the
VACEF, one can also consider the long-time decay for the
general case with 7 being fixed. Upon expanding A[w] in
(4.10) [see also (4.4)] as

AMol=i+iok,+0(0?), (6.6)

we obtain the exponentially decaying VACF with a
modified relaxation constant such that

At
1+X,

()= . €Xp
m

. (6.7)
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Finally, we remark that our result is in contrast to that
obtained by Serra and Rubi [25]. They found that the
VACEF decays as ~¢ ! and therefore exhibits a long-time
tail. We found that the VACF always decays exponen-
tially.
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APPENDIX

Asymptotic forms of modified Bessel functions are
summarized in this appendix. Asz—

K, (z2)~V'7m/2ze 7. (A1)
Asz—0
Ko(z)~—(niz +y)+iz¥(~Inlz—y+1)+ -,
(A2)
Ky(2)~ L+ dzinz =1+ yp) - (A3)

where 7 is Euler’s constant ¥ =0.5772. .. .
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